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PREFACE

" This Memorandum was prepared as part of RAND's continuing study

of Satellite Meteorology for the National Aeronautics and Space

Administra'ion under contract number NASr-2i(07). It should be useful

in estimating source distributions in stellar and planetary atmos-

pheres based on observations of emergent intensity patterns.
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SUMMARY

A finite homogeneous slab which absorbs radiation and scatters

it isotropically possesses internal isotropic sourc s of radiation.

The authors first show how to determine the intensity of the emergent

radiation, making use of invariant imbedding techniques, and then

show how to determine the distribution of the internal sources that

best accounts for an observed emergent radiation pattern. This

inverse problem is viewed as a nonlinear two-point boundary value

problem which can be resolved numerically using quasilinearization.
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I. INTRODUCTION

A basic problem in science and engineering is inferring causes

on the basis of observed effects. In the construction of model

stellar and planetary atmospheres and in the study of planetary

F
entry phenomena, this problem is particularly slgnificant.! In this

Memorandum we shal! discuss some aspects of this problem in relation

to the ability of the modern computer to integrate systems of a

thousand or more ordinary nonlinear differential equations.

The physical situation is as _ollows: A slab of finite optical

thickness absorbs radiation and scatters it isotropically. It

possesses internal sources of isotropic cadiation. First, we dis-

cuss the direct problem of determining the intensity of the radia-

tion emerging from the slab, with particular emphasis on its angular

distribution. We use standard ideas from the theory of invariant

imbedding; (1,2) the X and Y functions of Chandcasekhar play a

fundamental role. (3) Then we shift to the inverse problem.

We assume that measurements of the emergent radiation field are

made, and it is desired to determine the distribution of internal

sources which best explains the measurements. This is viewed

mathematically as a nonlinear two-point boundary value problem

which is solved numerically using quasilinearization. (4'5) We con-

clude with a discussion of some of the extensions of '.hemodel which

are possible.

The importance of such problems was brought out in conversations

with Dr. Ralph Zirkind of the Advanced Research Projects Agency.

i
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II. DERIVATION OF THE BASIC EQUATIONS

Consider a homogeneous slab bounded by two planes separated by

an optical distance Xo° The slab both absorbs radiation and scatters

it isotropically, the albedo for single scattering is _.. Within

the _lab are isotropic sources of radiation. At each point y above

the bottom surface, the strength o__ the source i_ B(y) per unit

volume per unit solid angle per unit time.

We first derive computationally useful equations for the

intensity of the radiation emerging from the top surface. To do this,

we consider the slab extending from the bottom to the optical alti-

tude x, add a layer of thickness A, and note the changes that occur

in the intensity of the r_diation emerging from the top of the slab.

Let

T(v,x)dv = the rate of emission of energy per unit horizontal

area through the upper surface of a slab of thick-

ness x, having a direction cosine, with respect (I)

to the upward-directed normal, between v and

v+ dv.

In addition let

p(v,x)dv = the fraction of the energy which is isotropically

emitted at the top of the slab of thickness x and

(2)
which ultimately emerges from the top with a di-

rection cosine between v and v + dv.

|
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Then we may write

T(v,x+A)dv = - T(v,x)dv + T;B_,x)t., + T(v'.x)d_' _-7 p(v,x)dv

0 (3)

+ o(tO.

The first term on the right-hand side accounts for the losses en-

countered in passing through the slab of thickness A. The first

factor in the second term is the total rate of production of scattered

radiation in a zylinder with unit base area and altitude A, located

at the top of the slab of thizkness x. The second factor is the

frsction of such radiatlon which ultimately emerges from the top with

a direction cosine v. The third term, o(A), accounts for all

higher order processes and consists of terms in A of powers higher

than the first. The limiting form, as A tends to zero, is the partial

differential-integral equation

I

f dv t
(v,x) = i T(v,x) + 4_p(v,x)B(x) * kp(v,x) T(v',x) _ (4)Tx - _

0

The slab of thickness 0 is easily analyzed. We assume the bottom

surface is a perfect absorber which leaas to the condition

T(v,0)= 0. (5)

Situations in which the bottom surface is an emi1"ter and a reflector

are .readily treated, though we do not discuss them here,
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In order to integrate Eq. (4) it is necessary to derive an

equation for the function p(v,x). Let us introduce the function

q(v,x)dv = the fraction of the energy isotropically emitted

at the top of the slab of thickness x which

ultimately emerges from the bottom with a direc- (6)

tion cosine, with respect to the downward-directed

normal, between v and v + dv.

Then we may write
]

p(v,x+_) = p(v,x) + q(v,x) k q(v',x)dv t v---7+ o(A) . (7)
0

In Eq. (7) we :lave considered the slab of thickness x + _ to be made

by adding a slab of thickness A to the bottom of a slab of thick-

ness x. In addition, we have

I

q(v,x+A) = q(v,x) (i - v ) + p(v,x)k q(v',x)dv' + o(A). (8)
0

The limiting forms of these equations, as A tends to zero, are

1

dv t

Px(V,X)= _ q(v,x)S q(v',x)-_v (9)
0

and

i

qx (v,x) = 1 _ dv '" v q(v,x)+ x p(v,x) q(v',x)-Tv " (lO)
0
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For thin slabs of thickness A we have

2_ dv

p(v,A)dv = 4----n--+ 0(A), (ii)

T

1

q(v,A)dv =_ dv + 0(A). (12)

Thus

1

p(v,O)= _, (13)

1

q(v,0) = _ . (14)

Our basic equmtions are

1

Px k q -[ q(v',x) dv' i (15)= -_7 , p(v,0) = _ ,
0

1

1 [ dv t I
qx = - v q + _ p a q(vt,x) _ , q(v,0) =_ . (16)

0

1

T(v,0) = 0. (17)= _ I T + 4. p B + k p T(v',x) _ ,

dv'

Tx v
0

Experience with many similar systems of nonlinear differential-integral

equations leads us to believe that this system can be readily integrated

numerically by approximating the integrals through tLe use of finite

sums with Gaussian quadrature formulas. (1'2)

Before we discuss this, we will make several substitutions to

put the system of equations (15)-(17) into a more convenient form.
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_e write

i

p(v,x) --_ X(v,x), (18)

1Y(v,x) (19)q(v,x)= i

so that Eqs. (15) and (16) become

I

I _ dv tX
x =7 k Y J Y(v',x) --_ , X(v,0) = I, (20)

0

I

dv t= _ I y + k X Y(vt,x) _ Y(v,O) = i (21)Yx v _ ' "
0

Thus X and Y are the standard X and Y functions of radiative trans-

fer. (3'6'7)'- The intensity of the radiation emerging from the upper

surface of the slab of thickness x with direction cosine v is denoted

t (v, x) and is given by the formula

2_ v t(v,x) = T(v,x). (22)

With this substitution, Eq. (17) becomes

I

it+Bx+kX _=x = " _ _ _ t(v',x)dv', t(v,O) = O. (23)
0
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III. APPROXIMATE SYSTEM OF ORDINARY DIFFERENTIAl EQUATIONS

Our basic system of equations contains integrals o_L the interval

(0,i). We approximate such an integral of a function g(v) using a

Gaussian quadrature formula of order N,

i N

0 i=l

where w., i=l,2,...,N, are the Christoffel numbers, and v., i=l,2,...,N,
1 1

are the abscissas at which the integrand is to be evaluated. These

(7,8)
are tabulated in Ref. 2. From experience in similar problems, we

expect that N=7 will yield high accuracy. Let us then introduce the

functions xi(x), Yi(X) and t.1(x), 0 < x < Xo, as solutions of the

system of ordinary differential equations

N w.

xi i=-_ k Yi yj _.I = i, (_5)v. ' xi(0)
j=l ]

W.
• I 1 _R (26)
Yi = " v-_ Yi +3 k xi Yj v. ' Yi(0) -- I ,

i j=l J

N

_i = " _i ti +_i xi +_vl xi tj wj , ti(O) = 0, (27)

i=l,2,...,N.
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This is a nonlinear system of 3N ordinary differentia 1 equations with

a complete system of initial conditions. Its integration on a modern

computer is routine for 0 _ x & x0. In this way _le produce the values

of the emergent intensity at the top, t(vi,x0) , i=l,2,.o.,N, for a

given internal source distribution B(y), 0 _ y _<x0.
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IV. INVERSE PROBLEM AND QUAS!LINEARIZATION

Now let us turn to the problem of determining the source distri-

bution function B(y) which would best explain an observed emergent

intensity pattern. First we will consider the ca:;e in which

2
B(_) = a + by + cy , (28)

where a, b, a:Ld c are the three constants to be determined. We

suppose that the observed intensity of the emergent radiation with

direction cosi1_e v. is b.; i.e.,
i l

ti(Xo) --bi , i=l,2,...,N. (29)

We wish to minimize the sum of the squares of the deviations,

N

j=l

through an appropriate choice of the constants a, b, c, which enter

into Eqs. (25), (26), and (27) through B.

This _roblem is readily solved numerically using the quasili.neari-

zatiOnot_C_nique. (4'9) W° ngw present t._,=basic formalism. A

system of M equations is written in vector form

x = f(x,_), x(0) = =, (30)

where _ is an R-dimensional vector constant. We wish to determine

the vector c_so as to _inimlze the form
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F = (x(T)- 8, - (31)

where Q is a positive @efinite square m_,trix of orSer M, and _ is a

given vector. We considel '_ to be a function of time satisfying the

differential equation

& = 0. (32)

Now the initial value of _ is unknown. Thus, our original problem

is equivalent to one in which

y = g(y) , y(O) = w, (33)

and some of the components of w, say the first L, are free, and the re-

maining ones are specffied. We wish to minimize a quadratic form in

y(T), the final value of y. This can be done by starting with an

initia] approximation, w = w (0) and integrating the system, Eq (33)

to produce y(O)(t),- 0 _ t < T. The next apprcximation is produced by

finding y(1)(t) so that

y(1) = j(y(O)) (y(1) . y(O)) + g(y(O)), (34)

wher_ F is minimized; j(y(0)) is the Jacobian matrix

Jij = _ (35)

This is done by numerically producing an appropriate system of L

independent solutions of the homogeneo_s equation corresponding to

Eq. (34) and also _ particular solution. In an obvious notation, the

possible solutions of Eq. (34) are
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L

y(1)(t) = p(t) + _E ci hi(t)' (36)
i=l

where c., i=l,2=...,N, are arbitrary constants. The minimizing values

of c., i=l,2, ... ,L, are determined by substituting y(1)(T) (as deter-
l

mined from Eq. (36)) into F (from Eq. (31)). A linear algebraic

system of equations for the optimal choices of ci, i=l,2,...,L,

results from

_F
= 0 , i=l,2,...,L. (37)

i

Many previous calcdlations attest to the efficac_ of the procedure.

However, at times, special devices are r_quired to carry through all

the steps. (4'I0) The procedure is then repeated to produce y(2)(t),
5.

and so on. When the initial estimate is sufficiently good, the

process w_il converge quadratically; that is_ the numbe_ ' of correct

digits in each approximant doubles asymptotically.

The case of a layered Slab is discussed in Ref. 8.

If B(y) is known only as the solution of a differential equation

involving some unknown constant vector

i

"_ dB

d"_" = g(Y'_) ' (38)

essentially the same procedure is used. Equation (38) i_ adjoined to

(Ii)
the system of Eqs. (25)-(27), and the calculation proceeds as before.
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V. DISCUSSION

In the previous paragraphs we have indicated that a judicious

use of concepts from the theories of invariant imbedding .=:.dquasi-

linearization, together with modern digital computers, could lead to

the determination of internal source distributioa.- using external

field measur_aents. It is possible to examine Lhe effects of errors

in the measurements on the accuracy of the source distribution

estimation. This might be of value in planning experiments. In

addition, the results of the calculations might ser_e as a stimulus

to the development of new theories concerning the sources.

It would probably be necessary to start a computational program

with the simple physical model sketched. The basic invariant imbedding

equations for various generalizations are available. These include

spherical and cylindrica _.geometry, time dependence, (2) anisotropy

of the scattering law, (9) inhomogeneity of the medium, (12) and energy

dependence. (I3)
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